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Abstract: With the development of Wireless Power Transfer (WPT) technology, Wireless Rechargeable Sensor Networks 

(WRSNs) have become the focus of researchers. Although many researchers have studied the problems of mobile charging in 

WRSN, they often neglect the differences between sensors. In the actual situation, the utility of different sensors may be different 

even when they receive the same energy. In this paper, we consider that there are many initial subareas need to be monitored. The 

different initial subareas have different monitoring utility per unit area, and each sensor covers a circular area. Thus, the entire 

region can be further divided into more final subareas. The total monitoring utility is the sum of the monitoring utility of the final 

subareas monitored by sensors. This is the first work to study monitoring-driven mobile charging problem, which considers the 

differences between different subareas. We model the monitoring-driven mobile charging system and formalize the 

Monitoring-driven Mobile Charging (MMC) problem. Our goal is to find a traveling loop that does not exceed the energy 

capacity of the mobile charger, to maximize total monitoring utility. Through area discretization and auxiliary graph construction, 

we simplify the problem and provide a greedy algorithm to solve it. The simulation results show that the proposed algorithm can 

outperform comparison algorithms by at most 189.11% in terms of monitoring utility. 

Keywords: Wireless Charging, Mobile Charging, Monitoring-Driven, Area Discretization, Auxiliary Graph Construction 

 

1. Introduction 

Wireless Sensor Network (WSN) is a network system 

composed of a large number of wireless sensors those have 

sensing, computing and communication capabilities. Due to 

the advantages of flexible deployment, wide coverage, high 

real-time performance, and low cost, WSN has been widely 

used in many fields, such as military surveillance, disaster 

prediction, biomedical health monitoring, and hazardous 

environment exploration [1]. In a large number of researches 

related to WSN, the energy replenishment has always been the 

focus of industry and academia. Because of the advantage of 

providing continuous and reliable power supply, Wireless 

Power Transfer (WPT) technology has been widely used in 

WSN [2, 3]. With the further development of WPT technology, 

Wireless Rechargeable Sensor Networks (WRSNs) have been 

extensively developed in real life, such as unmanned aerial 

vehicles (UAVs) [4, 5], rechargeable robots [6, 7], and RFID 

systems [8]. 

There have also been many researches based on WRSNs 

[9-13]. From the types of chargers, they can be divided into 

static charging [9, 10] and mobile charging [11-13]. In the 

case of a limited number of chargers in a large-scale network, 

mobile charging is a more suitable choice. In this paper, we 

study the mobile charging scenario. 

However, the above researches in mobile charging only 

consider how to charge the sensors, but do not involve the 

impact of the specific monitored objective on the monitoring 

utility. In previous researches, only the energy is used to judge 

the utility. In such a case, every sensor is roughly regarded as 

equivalent. However, in the actual situation, the utility of 

different sensors may be different even when they receive the 

same energy. Therefore, in order to be more practical, we need 

to consider the differences of sensors. 

In this paper, as shown in Figure 1(a), we assume that there 
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are many initial subareas need to be monitored. The different 

initial subareas have different monitoring utility per unit area, 

and each sensor covers a circular area. As shown in Figure 

1(b), the entire region can be further divided into more final 

subareas. The total monitoring utility is the sum of the 

monitoring utility of the final subareas monitored by sensors. 

In particular, even if a final subarea is monitored repeatedly, 

the monitoring utility can only be obtained once. 

  

                (a)                          (b) 

Figure 1. Illustration of subareas. (a) Initial subareas. (b) Final subareas. 

 

Figure 2. System model. 

This paper aims to study the Monitoring-driven Mobile 

Charging (MMC) problem. As shown in Figure 2, the mobile 

charger moves from the depot and can charge the sensors at 

any location in the region. The charging mode in this paper is 

full charging, which means that when the mobile charger 

charges at a location, the energy demand of all sensors within 

the charging radius should be fully satisfied. Our goal is to 

find a traveling loop that does not exceed the energy capacity 

of the mobile charger, to maximize total monitoring utility. 

The MMC problem is very challenging. First, the number of 

possible charging locations is infinite. Second, when multiple 

sensors repeatedly monitor the same final subareas, the total 

monitoring utility is not the direct accumulation of the 

monitoring utility of these sensors. Therefore, the interaction 

between sensors cannot be ignored. Third, MMC problem is 

more difficult than the budgeted maximum coverage problem, 

which is a well-known NP-hard problem [14]. 

The main contributions of this paper are outlined as 

follows: 

1. To the best of our knowledge, this is the first work to 

study monitoring-driven mobile charging problem, 

which considers the differences between different 

subareas. 

2. We model the monitoring-driven mobile charging 

system and formalize the Monitoring-driven Mobile 

Charging (MMC) problem. Through area discretization 

and auxiliary graph construction, we simplify the 

problem and provide a greedy algorithm to solve it. 

3. Through extensive simulations and experiments, we 

demonstrate that the proposed algorithm can improve 

monitoring utility by at most 189.11%, compared with 

the benchmark algorithms. 

The rest of the paper is organized as follows. Section II 

presents the brief review on the previous works. Section III 

presents system model and formulates MMC problem. Section 

IV presents the details of our solution. Experimental results are 

shown in Section V. We conclude this paper in Section VI. 

2. Related Work 

There are many researches on charging scheduling for 

WRSNs. We briefly review the works on mobile charging, 

utility driven charging scheduling, utility-charging joint 

scheduling, and budget constrained charging scheduling, 

which are closely related to this study. 

Mobile charging. Xu et al. [15] used multiple mobile 

chargers for charging sensors to speed up sensor charging 

significantly, thereby reducing their expiration durations and 

improving the monitoring quality of WRSNs. They 

formulated a novel delay minimization problem and devised 

the very first approximation algorithm with a provable 

approximation ratio for the problem. However, in their paper, 

utility was not the optimization objective. Ma et al. [16] 

utilized a mobile charger to charge multiple sensors 

simultaneously under the energy capacity constraint of the 

mobile charger to maximize the charging utility. Srinivas et al. 

[17] proposed a mobile charger utility maximization approach 

through preemptive scheduling (MCUMPS) for WRSNs. In 

their approach, they mainly focused on the visiting order of 

the mobile charger by segregating the sensors into two 

categories called critical nodes and emerging nodes. Critical 

nodes (CNs) had a higher priority than emerging nodes 

because the dying of CNs isolated some part of the network. 

However, whether in [16] or [17], the difference in monitoring 

utility of different sensors was not involved. Priyadarshani et 

al. S. Priyadarshani et al. [18] proposed a multi-node charging 

vehicle scheduling scheme using partial charging model to 

minimize the travel energy. However, in our paper, the 

charging model is full charging. 

Utility-driven charging scheduling. Sun et al. [19] focused 

on the charging exclusivity issue in stochastic events 

monitoring while improving network performance. In specific, 

they paid close attention to the trade-off between charging and 

task sensing, and formulated a combinatorial optimization 
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problem with routing constraints. They introduced novel 

discretization techniques and investigated the routing problem 

to reformulate the original problem into a submodular 

function maximization problem. Ren et al. [20] proposed an 

Intelligent Charging scheme Maximizing the Quality Utility 

(ICMQU) to design the charging path for the mobile charger. 

They aimed to maximize the sensing utility for both single 

mobile charger and multiple mobile chargers with 

heterogeneous sensors, which had different sensing quality. 

Compared with the previous studies, they considered not only 

the utility of the data collected from the environment, but also 

the impact of sensors with different quality. However, the 

above works did not consider the differences between 

subareas. 

Utility-charging joint scheduling. Wu et al. [21, 22] 

respected the energy requirement diversity among sensors to 

investigate the collaborated and tasks-driven mobile charging 

problem. Their goal was to maximize the total task utility that 

concerned sensor selection and task cooperation. However, in 

their papers, the task utility of sensors was independent of 

each other. Ding et al. [23] considered a more practical issue 

of deploying wireless chargers, where their objective was to 

maximize the total achieved task utility with a limited 

deployment cost budget. To address this problem, they split it 

into two sub-problems, where the first sub-problem was about 

power allocation for sensors, and the second sub-problem was 

about optimal wireless charger placement. However, Ding et 

al. [23] did not involve the mobile charging. 

Budget constrained charging scheduling. Dai et al. [24] 

studied the problem of Placing directional wIreless chargers 

with Limited mObiliTy (PILOT) to maximize the overall 

charging utility for a set of static rechargeable devices on a 2D 

plane by determining deployment positions, stop positions and 

orientations, and portions of time for all deployed chargers 

that could move in a limited area after their deployment. Then 

they proposed an approximation algorithm to address PILOT. 

However, their budget constraints did not include the mobile 

costs. Zhang et al. [25] considered wireless charging service 

provision in a two-dimensional target area and focused on 

optimizing charging quality. They first considered the charger 

placement and power allocation problem with stationary 

rechargeable devices: Given a set of stationary devices and a 

set of candidate locations for placing chargers, they aimed to 

find a charger placement and a corresponding power 

allocation to maximize the charging quality, subject to a 

power budget. Then they proposed an approximation 

algorithm to solve it. They also considered how to deal with 

mobile rechargeable devices, cost-constrained power 

reconfiguration, and optimization with more candidate 

locations. Although they considered mobility, in their paper, 

the movable objects were the rechargeable devices, but not the 

chargers. Wu et al. [26] considered the multi-UAV wireless 

charging scheme in large scale wireless sensor networks, 

where sensors could be charged by the UAV with wireless 

energy transfer. They studied how to optimize the route 

association to maximize the overall charging coverage utility, 

when charging routes and associated sensors should be jointly 

selected. They cast it as maximizing a monotone submodular 

function subject to matroid constraints and proposed an 

approximation algorithm to solve it. Lin et al. [27] addressed 

the issue that how to serve a 3-D WRSN with the UAV. Their 

main concern was to maximize the charged energy for sensors 

supplied by the UAV with the energy constraint. They 

designed a spatial discretization scheme to construct a finite 

feasible set of charging spots and a temporal discretization 

scheme to determine the appropriate charging duration for 

each charging spot. A cost-efficient algorithm (CEA) with a 

provable approximation ratio was proposed to solve it. 

However, both of Wu et al. [26] and Lin et al.  [27] did not 

involve the differences of subareas. 

Overall, although there are many existing works on 

charging scheduling, there is no monitoring-driven mobile 

charging which involves the differences of subareas. 

3. System Model and Problem 

Formulation 

3.1. Network Model 

Let 1 2{ , ,..., }nO o o o= be the set of n sensors distributed in a 

two-dimensional region R . The sensor jo O∈ can monitor a 

circular area with monitoring radius jd . It has the energy 

demand ( )jc o , which is necessary for completing the 

monitoring task. Suppose that all the sensors’ batteries are 

empty at the beginning. We use 
01 2{ , ,..., }mϕ ϕ ϕΓ = to denote 

the set of all initial subareas. For each zϕ ∈ Γ , it has 

monitoring utility per unit area zw . Referring to Figure 1, 

combining the initial subareas with the monitoring circle areas 

of all sensors, final subareas can be obtained. We use

1 2{ , ,..., }mφ φ φΦ = to denote the set of all final subareas, and 

each lφ ∈ Φ has the area la . Obviously, any final subarea must 

belong to an initial subarea. Therefore, according to the 

monitoring utility per unit area of initial subareas, we can 

obtain the monitoring utility per unit area of each final subarea, 

and use lw to denote the monitoring utility per unit area of final 

subarea lφ . Therefore, the final subarea lφ has the monitoring 

utility l la w . 

A mobile charger starts at the depot 0s and tries to charge 

some sensors. The mobile charger can charge at any location 

in the region and it has the energy capacity E . 

3.2. Energy Consumption Model 

In our paper, there are two types of energy consumption, the 

charging energy consumption and the traveling energy 

consumption. Firstly, we show how to calculate the charging 

energy consumption. The charging power that sensor jo O∈

receives from mobile charger at charger location is R∈ can be 

expressed by the following empirical formula [28]: 
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where ( , )i jd s o is the distance between jo and is , D is the 

maximum charging distance, α and β are the constants that 

are determined by the hardware and environment. 

When the mobile charger arrives at the charging location is , 

it must satisfy the energy demands of all sensors within its 

maximum charging distance. We define the set of these 

sensors as ( ) { | ( , ) }i j i js o d s o DΛ = ≤ . Therefore, the charging 

time at the charging location is is: 

( )

( )
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=            (2) 

The transmitting power of the mobile charger is γ . 

Therefore, the energy consumed at charging location is is

( )it sγ . However, if a sensor jo belongs to multiple ( )isΛ , 

when it has been charged once, its energy demand will 

become zero. In addition, the depot 0s is not considered as a 

charging location, therefore its charging time is zero. Even if 

there is a charging location that completely overlaps with 0s , 

the two locations are still considered different. 

Then, we consider the traveling energy consumption. We 

use 0 1 0, , ..., ,qL s s s s=< > to denote the traveling loop. The 

traveling energy consumption per unit distance of the mobile 

charger is µ . The energy cost from is to 'is is '( , )i id s sµ , where

'( , )i id s s is the distance between is and 'is . Therefore, the 

traveling energy consumption of L is
1

1 0
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Therefore, the total energy consumption for any charging 

loop L  can be expressed as: 
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3.3. Monitoring Utility Model 

We use ( )joΗ  to denote the set of final subareas within 

the monitoring circle area of jo . The monitor utility of sensor 

jo  is: 

( )

( )

l j

j l l

o

u o a w

φ ∈Η

= ∑             (4) 

We use S  to denote the set of charging locations in L . 

After the mobile charger completes all charging tasks, the set 

of final subareas those can be monitored is 

( )

( ) ( )
i j i

j
s S o s

S o
∈ ∈Λ

Ω = Η∪ ∪
. The total monitoring utility is 

defined as: 

( )
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l
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S
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3.4. Problem Formulation 

The problem is to find a traveling loop for the mobile 

charger to maximize the total monitoring utility in the network. 

We refer to this problem as the Monitoring-driven Mobile 

Charging (MMC) problem: 

( ) :       max ( )MMC U S             (6) 

1
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. . ( ) ( , ) ( , )
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,i is R s S∈ ∀ ∈              (8) 

The constraint (7) ensures that the total energy consumption 

does not exceed the energy capacity. The constraint (8) 

ensures that the charging locations in S all belong to R . 

We list the frequently used notations in Table 1. 

Table 1. Frequently Used Notations. 

Symbol Description 

R  Continuous two-dimensional space region 

r  Monitoring radius of all sensors 

Γ , 0m  Set of initial subareas, Number of initial subareas 

Φ , m  Set of final subareas, Number of final subareas 

O , n  Set of sensors, Number of sensors 

la , lw  
Area of final subarea lφ , Monitoring utility per unit area 

of final subarea lφ  

E  Energy capacity of mobile charger 

D  Maximum charging distance of mobile charger 

( )jc o  Energy demand of sensor jo  

( )joΗ  
Set of final subareas within the monitoring radius of 

sensor jo  

Pr( , )i js o  Charging power from is to jo  

( )it s  Charging time at the charging location is  

γ  Transmitting power of the mobile charger 

µ  
Traveling energy consumption per unit distance of the 

mobile charger 

L , S  Traveling loop, Set of charging locations in L  

( )ju o , ( )U S  Monitoring utility of jo , Total monitoring utility of S  

δ , ε  Side length of uniform grids, Discretization error 

4. Solution of MMC Problem 

In this section, we present the algorithm of the MMC 

problem. We first show the hardness of MMC problem. Next, 

we introduce an area discretization method to reduce the 

number of the candidate charging locations in MMC from 

infinite to finite. Then, we introduce the auxiliary graph 

construction to remove the constraint of charging energy 

consumption. At last, we solve the problem with a simple but 

efficient algorithm and give the details of algorithm and 

analysis. 
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4.1. Hardness 

First, we attempt to find an optimal algorithm for the MMC 

problem. Unfortunately, as the following theorem shows, the 

MMC problem is NP-hard. 

Theorem 1. The MMC problem is NP-hard. 

Proof: We first introduce the following budgeted 

maximum coverage problem: A collection of sets 

1 2{ , , ..., }qR s s s= with associated costs ( )it sγ is defined over 

a domain of elements 1 2{ , ,..., }nO o o o= with associated 

weights ( )ju o . The goal is to find a collection of sets S , such 

that the total cost of elements in S does not exceed a given 

budget E , and the total weight of elements covered by S is 

maximized. 

If the traveling energy consumption of the mobile charger 

is zero and there are limited charging locations, the 

simplified MMC problem is equivalent to the budgeted 

maximum coverage problem. If MMC problem can obtain 

the optimal solution in polynomial time, the budgeted 

maximum coverage problem can also obtain the optimal 

solution in polynomial time. However, this contradicts the 

fact that the budgeted maximum coverage problem is 

NP-hard. Therefore, MMC problem is NP-hard. 

Since the MMC problem is NP-hard, it is impossible to 

compute the optimal solution in polynomial time unless 

P=NP. Therefore, we try to use the heuristic algorithm to 

solve it. However, before presenting our algorithm, we need 

to execute area discretization and auxiliary graph 

construction to simplify the problem. 

 

Figure 3. Illustration of area discretization [29]. 

4.2. Area Discretization 

At first, we discrete region R into uniform grids with side 

length δ , and then further divide the discretized subareas by 

drawing circles with radius D for each sensor. The distances 

from each charging location in the same discretized subareas 

to sensors are approximated accordingly. For example, as 

shown in Figure 3, there are 81 discretized subareas after 

gridding and 33 more after drawing circles. Suppose we 

obtain χ effective discretized subareas those cover at least 

one sensor, and then randomly choose a location in each 

discretized subarea as the candidate charging location. We 

denote the set of the charging locations by 1 2{ , ,..., }K k k kχ= . 

According to [29], we have the following two theorems. 

Theorem 2. The obtained number of subareas after area 

discretization is 
2

2

| |
( )

R nD
O n

δδ
+ + , where | |R is the size of

R . 

Theorem 3. Let Pr( , )i js o be the maximum charging power 

from the charging location in the same subarea as hk K∈ to 

sensor jo , Pr( , )h jk o be the charging power from hk to 

sensor jo . Setting
2 1

( 1)
2 1

δ β
ε

= −
−

, where ε  is the 

discretization error and (0,1)ε ∈ , we have

(1 ) Pr( , ) Pr( , ) Pr( , )i j h j i js o k o s oε− ≤ ≤ . 

According to (2), we can have
1

( ) ( ) ( )
1

i h it s t k t s
ε

≤ ≤
−

. 

Now, we can simplify MMC to P1, where the number of 

charging locations is limited. 

1:       max ( )P U S                (9) 

1

1 0

1 0

. . ( ) ( , ) ( , )

q q

x x x q

x x

s t t s d s s d s s Eγ µ µ
−

+
= =

+ + ≤∑ ∑     (10) 

,i is K s S∈ ∀ ∈                (11) 

4.3. Auxiliary Graph Construction 

In order to reduce the constraints in MMC from the 

combination of charging energy consumption and traveling 

energy consumption to the constraint of traveling energy 

consumption, we need to construct an auxiliary graph G . 

The intuition behind the construction of G  is as follow. As 

the charging energy consumed at the charging location is  is 

( )it sγ . Each edge that is connected with the charging 

location is is assigned the identical weight
1

( )
2

it sγ . 

Therefore, the weight of the edge '( , )i is s is

' ' '

1 1
( , ) ( , ) ( ) ( )

2 2
i i i i i iW s s d s s t s t sµ γ γ= + + , and the weight of

is and 'is is zero. Then we can reduce the constraint from the 

combination of the charging energy consumption and 

traveling energy consumption to the constraint of the 

traveling energy consumption. 

Theorem 4. The total energy consumed by the mobile 

charger in graph G is equal to that consumed in realistic 

situation. 

Proof: Given a traveling loop 0 1 0, , ..., ,qL s s s s=< > , its 

total energy consumption is
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Therefore, we obtain the theorem. 

Then we can reformulate the problem P1 to P2. 

2 :       max ( )P U S              (13) 
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( , )

. . ( , )

i i

i i

s s L

s t W s s E

∈
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,i is K s S∈ ∀ ∈               (15) 

Remark: When a new charging location is added into the 

loop, the auxiliary graph should be updated, because the 

energy demand of some sensors may become zero. 

4.4. Algorithm Design 

In this subsection, we will provide a simple but efficient 

algorithm to solve the problem P2. 

The lower level optimization in MMC involves finding a 

shortest traveling loop including some sensors which ensures 

the total energy consumption not exceed the energy capacity. 

Optimizing this energy consumption is more difficult than 

solving Traveling Salesman Problem (TSP) [30], which is 

also a NP-hard problem. However, we could use a nearest 

neighbor method to obtain the loop which can reduce energy 

consumption as much as possible. 

Algorithm 1: Monitoring-driven Mobile Charging 

Algorithm (MMCA) 

Input: jo O∀ ∈ , 0s , E , µ ,γ , lφ∀ ∈ Γ , K , G  

Output: L , S  

1: *K K← , S ← ∅ ; 

2: while *K ≠ ∅ do 

3: according to 0{ }S s∪ , use the nearest neighbor method 

to obtain L ; 

4: for each *hk K∈ do 

5: ( ) { }h hS k S k← ∪ ; 

6: according to 0( ) { }hS k s∪ , use the nearest neighbor 

method to obtain ( )hL k ; 

7: end 

8: 
'

' ' '

'

' '

( , ) ( ) ( , )

( ( )) ( )
arg max

( , ) ( , )h

i i h i i

h
h

k K i i i i

s s L k s s L

U S k U S
k

W s s W s s∈

∈ ∈

−
←

−∑ ∑ ; 

9: if
'

'

( , ) ( )

( , )

i i h

i i

s s L k

W s s E

∈

≤∑ then 

10: ( )hS S k← ; 

11: end 

12: * * \{ }hK K k← ; 

13: end 

14: according to 0{ }S s∪ , use the nearest neighbor method 

to a path L ; 

As illustrated in Algorithm 1, let *K be the residual 

candidate location set, we initialize *K and S (Line 1). If 

there are candidate locations in *K (Line 2), we traverse all 

locations in *K and add each location hk to a temporary set

( )hS k (Line 4). According to 0( ) { }hS k s∪ , we use the 

nearest neighbor method to find a loop ( )hL k (Line 6). Then 

we find the location with the maximum utility-consumption 

ratio (Line 8). If the energy constraint is satisfied, we update

S to ( )hS k (Line 9-11). Update *K (Line 12) and continue 

traversing until the *K is empty. Finally, according to

0{ }S s∪ , we obtain the loop (Line 14). 

4.5. Theoretical Analysis 

In this subsection, we give a series of theoretical analysis 

about MMCA. Firstly, we need to provide a definition. 

Definition 1. (Nonnegative, monotone, and submodular 

function): Given a finite ground setV , a real-valued set 

function defined as : 2Vf ← ℝ , f  is called nonnegative, 

monotone, and submodular if and only if it satisfies following 

conditions, respectively: 

1) ( ) 0f ∅ = and ( ) 0f A ≥ for all A V∈ ; 

2) ( ) ( )f A f B≤ for all A B V⊆ ⊆ ; 

3) ( ) ( ) ( ) ( )f A f B f A B f A B+ ≥ +∪ ∩ for any ,A B V⊆

or equivalently: ( { }) ( ) ( { }) ( )f A v f A f B v f B− ≥ −∪ ∪ ,

A B V⊆ ⊆ , \v V B∈ . 

Then, we have the following theorem. 

Theorem 5. The monitoring utility function is nonnegative, 

monotone and submodular. 

Proof: According to the definition of our monitoring utility 

function, obviously, it is nonnegative and monotone. Then 

we prove that it is submodular. To prove the submodularity, 

we only need to show that the following inequality holds for 

any A B V⊆ ⊆  and \v V B∈ : 

( { }) ( ) ( { }) ( )U A v U A U B v U B− ≥ −∪ ∪      (16) 
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We consider the following three cases: 

(Case 1) If ( ) ( )v BΗ Ω = ∅∩ , obviously, we have 

( )

( { }) ( ) ( { }) ( )

l

l l

v

U B v U B a w U A v U A

φ ∈Η

− = = −∑∪ ∪
   (17) 

(Case 2) If ( ) ( )v BΗ Ω ≠ ∅∩ , ( ) ( )v AΗ Ω = ∅∩ , we 

have 

( ) ( ) ( )

( )

( { }) ( )

                           

                           ( { }) ( )

l l

l

l l l l

v v B

l l

v

U B v U B a w a w

a w

U A v U A

φ φ

φ

∈Η ∈Η Ω

∈Η

− = −

≤

= −

∑ ∑

∑
∩

∪

∪

   (18) 

(Case 3) If ( ) ( )v BΗ Ω ≠ ∅∩ , ( ) ( )v AΗ Ω ≠ ∅∩ , because

A B⊆ , assume \C B A= . We have 

( ) ( ) ( ) ( )

( ) ( ) ( )

( { }) ( )

                           

                           ( { }) ( )

l l

l l

l l l l

v v A C

l l l l

v v A

U B v U B a w a w

a w a w

U A v U A

φ φ

φ φ

∈Η ∈Η Ω Ω

∈Η ∈Η Ω

− = −

≤ −

= −

∑ ∑

∑ ∑
∩ ∩

∩

∪

∪

  (19) 

Based on (17), (18) and (19), we obtain the theorem. 

Because ( )U S is nonnegative, monotone and submodular, 

according to [31], we have the following theorem. 

Theorem 6. If ( )U S is nonnegative, monotone and 

submodular and shortest traveling loop algorithm can obtain 

θ - approximation, the algorithm obtains a set such that 

1 1
( ) (1 ) ( *)

2
U S U S

e
≥ −  

where *S  is the optimal solution of 

(1 ( 1)(1 ))
max{ ( ) | ( ) }c c

c

E Y y
U S T S

Y

ηη
θ

+ − −
≤ , ( )T S is the 

energy consumption of shortest traveling loop when the input 

set is S ,
, :

( { }) ( )
min min

( { }) ( )x A B A B

T A x T A

T B x T B
η

⊂

−=
−

∪

∪
,

max{| |: ( ) }cY S T S E= ≤ ,
( ) ( \{ })

1 min
({ })

c
s S

S S s
y

s∈

Τ − Τ= −
Τ

. 

Theorem 7. The time complexity of MMCA is 3( )O χ . 

Proof: The running time of MMCA is dominated by 

finding the traveling loop (Line 6), which takes 2( )O χ . And 

this operation needs to be performed χ times. Therefore, the 

time complexity of MMCA is 3( )O χ . 

5. Simulation Results 

In this section, we perform simulations to verify the 

performance of our algorithm. 

5.1. Simulation Setup 

For the simulations, we randomly distribute the sensors in a 

2D plane. The default values of parameters are given in Table 

2. The unit of power is watt. The settings of parameters refer 

to the existing work [32]. We will vary the value of the key 

parameters to explore the impacts on the algorithms. All the 

simulations are run on a Windows machine with Intel (R) 

Xeon (R) CPU i7-10750H and 8 GB memory. Each 

measurement is averaged over 100 instances. 

Table 2. Default Settings of Parameters. 

Parameter Default value 

R  100m * 100m 
m  4 
n  50 

E  2000KJ 

( )jc o  [10, 14] KJ 

γ  15W 
µ  50J/m 

δ  2m 

α , β  90, 10 

D  2m 

r  3m 

We compare our algorithm with the following two 

algorithms: 

NNA (Nearest Neighbor Algorithm): We modify the 

Nearest Neighbor Algorithm in [33] to fit the scenario of this 

paper. In each iteration, NNA traverses all sensors those 

haven't been visited, and mobile charger chooses the nearest 

one such that the distance is minimized. The iterations 

terminate when all sensors are visited or energy capacity is 

exceeded. 

GAD (Greedy Algorithm after Discretization): In each 

iteration, GAD traverses all candidate charging locations after 

discretization those haven't been visited, and mobile charger 

chooses the one which can maximize the total monitoring 

utility. The iterations terminate when all candidate charging 

locations are visited or energy capacity is exceeded. 

5.2. Monitoring Utility 

 

Figure 4. Monitoring utility vs. n. 
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Figure 5. Monitoring utility vs. c (oj). 

To test the scalability of our algorithm, we increase the 

number of sensors from 20 to 95. As shown in Figure 4, the 

monitoring utility of GAD and MMCA increases with the 

increasing number of sensors. However, the monitoring utility 

of NNA decreases with the increasing number of sensors. This 

is because the optimization goal of NNA is not the monitoring 

utility. There may be more sensors with low monitoring utility 

in the traveling loop of NNA when the number of sensors 

increases. Specifically, MMCA increases the monitoring 

utility by 180.28% and 10.62% on average compared with 

NNA and GAD, respectively. 

Then, we increase the energy demand of sensors from [1, 5] 

KJ to [26, 30] KJ. As shown in Figure 5, the monitoring utility 

of all algorithms decreases with the increasing energy demand 

of sensors. This is because due to the increasing energy 

demand of sensors, mobile charger only charge fewer sensors. 

Averagely, MMCA increases the monitoring utility by 

185.03% and 13.45% compared with NNA and GAD, 

respectively. 

Then, we change the energy capacity of mobile charger. 

With the increasing energy capacity of mobile charger, more 

sensors can be charged. Therefore, the monitoring utility of all 

algorithms increases with the increasing energy capacity of 

mobile charger. As shown in Figure 6, MMCA increases the 

monitoring utility by 189.11% and 7.76% on average 

compared with NNA and GAD, respectively. 

 

Figure 6. Monitoring utility vs. E. 

 

Figure 7. Monitoring utility vs. r. 

Figure 7 shows the impact of monitoring radius of all 

sensors on the monitoring utility. The monitoring utility of all 

algorithms increases with the increasing monitoring radius of 

all sensors. This is because sensors can achieve more 

monitoring utility by covering larger area. Averagely, MMCA 

increases the monitoring utility by 185.06% and 10.80% 

compared with NNA and GAD, respectively. 

 

Figure 8. Monitoring utility vs. δ. 

Figure 8 shows the impact of side length of uniform grids 

on the monitoring utility. With the increasing side length of 

grids, the monitoring utility of GAD and MMCA decreases 

accordingly. However, because NNA is independent of 

discretization, its monitoring utility remains unchanged. 

Averagely, MMCA increases the monitoring utility by 

155.32% and 8.08% compared with NNA and GAD, 

respectively. 

6. Conclusions 

In this paper, we have presented a monitoring-driven 

mobile charging model, which considers the differences 

between different subareas, and formulate the 

Monitoring-driven Mobile Charging (MMC) problem. 

Through area discretization and auxiliary graph construction, 
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we simplify the problem and provide a greedy algorithm to 

solve it. The results demonstrate that our algorithm can 

increase the monitoring utility by at most 189.11% compared 

with the benchmark algorithms in extensive simulations. 
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